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Abstract 

The program that calculates the coupled-cluster electron correlation energy in the 
ACES II Program System was profiled and analyzed. With this information, we 
began parallelizing the most expensive subroutines with message passing and 
multithreading via MPI and OpenMP, respectively. We discuss the nature of the 
most important bottlenecks and our parallelization strategy for each. Initial 
timings for these parallel subroutines are also presented. 

Introduction 

Under 25 years of support from the DoD basic research agencies, AFOSR, ONR, and ARO; Rod 
Bartlett's research group at the University of Florida Quantum Theory Project formulated and 
implemented into general-purpose programs coupled-cluster (CC) methods for highly accurate 
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electronic structure calculations. The ACES II program was written in the early 90's [1,2,3]. The 
goal was to create a tool for the routine application of CC methods for open- and closed-shell 
molecules; for ground, excited, and ionized states; for molecular structure and spectra (IR, 
Raman, UV-vis, NMR, ESR, PES); for transition state and activation barrier determinations; and 
for molecular properties; while using real abelian symmetry [4,5]. ACES II is still at the 
forefront in terms of functionality and efficiency. 

The standard CC algorithm solves a set of coupled amplitude equations. In general, a scheme 
based on molecular orbitals (MO) is faster than one based on atomic orbitals (AO) since the MO 
target matrix (T amplitudes) is at least 75% smaller than the AO target matrix. The disadvantage 
of using an MO-based scheme is the volume of transformed integrals needed for evaluating the T 
amplitudes. 

One way to decrease the sizes of the storage files is to transform only the smallest MO integrals 
while leaving the larger quantities for on-the-fly transformation with stored or direct AO 
integrals. This is often referred to as "using the AO basis" while it is implied that the T 
amplitudes are defined in the MO basis. The disadvantage of AO basis schemes is the time spent 
evaluating all the contributions a single integral makes to the amplitudes. For large systems of 
chemical interest, we need to use the AO basis for the virtual-virtual-virtual-virtual MO 
integrals. 

Due to recent demands for calculations on larger molecules (20-30 atoms) and to the need for 
faster throughput in calculations, we have begun parallelizing the CC algorithm in the ACES II 
program. The initial phase of this effort, contracted by PET under the CCM CTA, attempts to 
micro-parallelize the existing CC single-point energy program wherever possible rather than to 
build a new software package from scratch. Before programming could begin, a thorough 
profiling of the existing CC implementation was required in order to identify the bottlenecks and 
set directions for parallelization. 

The software described here was developed on a cluster of IBM RS/6000 workstations each with 
four 375 MHz POWER3 CPUs, 3 GB of main memory, and 18 GB of local disk space. The 
nodal configurations are similar to the IBM SP clusters installed at the NAVO, ARL, and ASC 
MSRCs with two exceptions. Our development cluster is connected with fast ethernet and the 
MSRCs use high-performance switches. Although porting the code will only decrease 
communication costs, a much more problematic difference is the lack of large local storage. The 
current parallelization strategy intentionally avoids distributed or remote storage strategies, and 
forcing the current prototype to access remote files will severely degrade performance. 

Profiling 

Initial attempts at timing the code revolved around the common profiling utility gprof. Most 
commercially available compilers provide a mechanism for creating profiler data files after 
running a binary executable. The data files may then be analyzed by utilities, which generate 
statistics on CPU usage by each subroutine during the program's execution. We discovered these 
analyses to be largely inadequate since the gprof call graph assignments are based on averaged 
times from a histogram. For example, subroutine A may call DGEMM, a double precision 
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matrix-matrix multiply [6], 99 times for a total cost of 1 second while subroutine B calls 
DGEMM once for a cost of 9 seconds. We are more interested in parallelizing the 9-second 
DGEMM than the 99 0.01-second DGEMMs. The gprof dependency graphs cannot tell the 
difference. The averaged results would indicate that 99% of the CPU time is spent in the 
DGEMMs called by subroutine A. 

A profiler can justify this behavior with the fact that the program has no control over other user 
or system processes, which may be competing for shared system resources. If a compute-
intensive process runs simultaneously with the program being profiled, then a wallclock profiler 
will unfairly weight whatever routines are called during this interval. This led us to create our 
own wallclock or realtime profiler, and we have been careful to time jobs run only with 
dedicated system resources. 

For the systems of current interest – C1 symmetry with many basis functions using the AO basis 
scheme – 20% to 30% of the total CCSD wallclock time is spent generating intermediate 
quantities used to determine the T amplitudes. Another 40% to 60% is spent generating the 
amplitudes. Further analysis of these bulk operations shows that less than 10 routines consume 
close to 90% of the total CCSD wallclock time. 

Table 1 lists the main subroutines in the ACES coupled-cluster member executable, called vcc, 
and the average percentage of wallclock time each one consumes over five molecular systems. 
From the table, the routines that individually account for more than 2% of the wallclock time are 
RDAO, CNTRCT, T1W1AB, RNGPRD, T1RING, and DODIIS. Other routines that we may 
consider for micro-parallelization are QUAD1, T1INT2B, and LADAB. 

GEMM-bound 
CNTRCT, T1W1AB, and RNGPRD each wrap a single yet very large DGEMM. It is common 
for each call to take tens or hundreds of seconds. T1RING is a wrapper for three routines, each of 
which calls DGEMM tens or hundreds of thousands of times, but each call lasts only a few 
milliseconds. 

I/O-bound 
The traditional answer for why vcc might be expected to suffer from I/O involves the processing 
of massive data files needed by each CC iteration. However, comparing total wallclock time to 
total user time for a dedicated node shows that the performance of vcc is more affected by faster 
CPUs and memory accesses than faster I/O subsystems. 

Processor-bound 
Processor-bound algorithms are ones in which the speeds and sizes of the memory and memory 
caches are the primary bottleneck [7]. Accessing arrays repeatedly in non-unit stride is a prime 
example of a processor-bound operation. With a reimplementation of an algorithm, it is possible 
to remove the architecture dependence and instead make the operation compute-bound. 
Compute-bound algorithms are the best ones to have (in the current technology market) since 
CPU speeds increase at a much more accelerated rate than the speeds of memory and I/O buses. 
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RDAOIJKL is responsible for loading and contracting all the AO integrals with the T2 
amplitudes from the previous CC iteration. The product array is named Z2, and this routine alone 
consumes 40% to 60% of the CCSD wallclock time. RDAOIJKL is processor-bound. It is true 
that this routine reads in all the AO integral files, but these read operations are sequential and 
unformatted. The aspect of the algorithm that slows it down so much is that it almost randomly 
updates columns in a very large matrix. Less than 1% of the wallclock time is spent reading in 
the integrals. 1% to 3% of the time is spent looking up the read and write indices of the T2 and Z2 
columns for each integral contraction. The remaining time is spent performing the Z2[]+=X*T2[] 
contractions. 

Parallelization 

GEMM-bound 
There are hundreds of distinct DGEMM calls in the vcc code. However, less than 10 are 
responsible for more than 90% of the wallclock time attributed to matrix multiplies. Attempts at 
linking to a fully parallel or multi-threaded BLAS library [8] have been disappointing. So much 
time is added by the previously insignificant DGEMMs that the few that might benefit from MP 
or MT are not able to compensate properly for the extra overhead. 

The easiest way to decompose a matrix-matrix multiply is by dividing the columns (rows of the 
transpose) of the second/right matrix over the number of threads, nodes, or both. This will 
introduce cache coherence problems for MT DGEMMs, but the effect is much less than dividing 
the rows of the first/left matrix over the number of threads. The performance of a DGEMM call 
divided over two threads with column blocking is shown in Table 2. In any case, there are 
countless studies of parallelizing matrix-matrix multiplies. We do not intend to reinvent this 
wheel, so we will use an off-the-shelf parallel DGEMM if column blocking proves to be too 
inefficient. 

I/O-bound 
For our initial test systems on dedicated nodes, the percentage of CPU time to wallclock time 
never dropped below 70% for CCSD. Analyzing the CPU usage during a vcc execution shows 
that there are times when the processor usage drops below 2% for sustained periods. The routine 
that is responsible for this has yet to be found; however, every node currently requires a full file 
set. Without an interprocedural analysis (IPA) [9] or a serial reimplementation, both of which 
will be performed before the project ends, this behavior will not change. 

Processor-bound 
Since beginning this project, RDAOIJKL has been reimplemented twice. The first optimization 
removed a very costly loop of conditionals over the contraction matrix. The second optimization 
treats integrals with four common symmetries (denoted IIII) separately from those with differing 
symmetries (such as IJIJ, IIJJ, and IJKL). 
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Distributing each integral batch over the number of nodes allows the RDAO routines to achieve 
near-linear scaling assuming the processor subsystems are the same in all nodes. The theoretical 
limit is the number of integrals (600 by default) in a batch. We have experimented with further 
dividing the write-domain (columns in the Z2 matrix) over available threads. The wallclock time 
decreases with the thread count, but the scaling is not linear since there is no guarantee of perfect 
(or even decent) load balancing while processing an integral batch. To further reduce the effect 
of cache conflicts, we intend to implement a leading dimension to the Z2 matrix that is a multiple 
of the size of a cache line. The performance of RDAOIIII divided over 2 MPI processes and 2 
OpenMP threads is shown in Table 2. 

The disadvantage to this distribution over nodes is the need to allreduce (global reduction 
followed by global broadcast) the large Z2 matrix after processing the integrals. This 
communication is quite costly; however, the bottleneck is the network bandwidth and not the 
communication latency. 

Future Work 

The two main limiters from achieving 100% parallel efficiency or linear scaling are serial 
bottlenecks and interprocess communication (including synchronization). With a parallel CC 
algorithm, there will always be some amount of redundant serialization (e.g., determining low-
cost one-particle intermediates) and some amount of synchronized communication (e.g., 
broadcasting the new amplitudes between the nodes before the next CC iteration). However, 
there are multiple ways to parallelize most algorithms and we must rely on real-world profiling 
results to guide our efforts. 

Decrease Communication 

From an interprocedural analysis of various routines, it may be possible to communicate reduced 
quantities at a lower cost than to communicate shared quantities the moment they become 
available (a consequence of micro-parallelization). An example of such an analysis shows that 
the temporary T2 contributions in the partially back-transformed state are fully transformed 
before being added into the new T2 amplitudes. The full MO representation of an (AB,IJ) type 
operator will always contain fewer elements than a full AO representation. Instead of calling 
MPI_Allreduce on the full Z2 matrix after the rdao routines, the code could wait until the 
retransformation and allreduce fewer T2 contributions at a lower cost based on the 
communications bandwidth. 

Tune Serial Routines 

One of the disadvantages of using research-oriented software is the initial use of naive 
implementations with the intent to optimize later. If the programmer is drafted into other 
projects, that optimization may never take place. 

We have discovered quite a few routines that could benefit from serial reimplementation. 
DODIIS is one routine that consistently consumes 1% to 3% of the total wallclock time. The 
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bottleneck in that routine involves forming a matrix of dot products whose factors track the 
convergence of the T amplitudes over multiple iterations. The current algorithm is limited by 
available memory and I/O bandwidth. An alternate serial algorithm could be implemented with 
new code, which will be definitely faster, or a parallel algorithm could be implemented with a 
new dependence on communication latency. 

Distribute Computation from IPA 

The determination of T amplitudes at one iteration only depends on the amplitudes from the 
previous iteration and constant one- and two-particle operators and integrals. With a massive 
IPA, it is technically possible to distribute the amplitude determination over the compute nodes 
such that only the intermediate quantities needed for each subset of amplitudes are computed 
locally. In principle, this approach should limit the communication to a single allgather at the end 
of each CC iteration; however, the nature of the electron correlation problem suggests otherwise 
if we choose not to recompute common intermediates among the nodes. Such an algorithm will 
have to be studied and tested for performance. 
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Table 1. Average wallclock percentages for vcc subroutines from 5 RHF, C1, AO basis systems. 

ROUTINE 
NAME 

PERCENT 
OF TOTAL 
WC TIME 

 ROUTINE 
NAME 

PERCENT 
OF TOTAL 
WC TIME 

ZERSYM 0.2% FEACONT 0.5%

T1RING 3.7% FMICONT 0.2%

CNTRCT 10.1% FMECONT 0.4%

SUMSYM 0.1% T1INT2A 0.3%

F2TAU 0.0% T1INT2B 1.6%

GETLST 0.8% T1INT1 0.4%

QUAD1 1.1% LADAA 0.0%

QUAD2 0.4% LADAB 1.2%

QUAD3 0.3% T2TOAO 0.6%

MAKFME 0.2% RDAO 52.9%

T1W1AA 0.0% Z2TOMO 0.9%

T1W1AB 5.4% ZIAAO 0.1%

T1INW2 0.0% T12INT2 0.7%

RNGPRD 11.1%

SUMRNG 0.3%

ERNGAA 0.0%

ERNGAB 0.2%

SUMSYM 0.2%

E4S 0.2%

NEWT2 0.4%

PHASE3 0.5%

DODIIS 3.3%

 

Table 2. Preliminary results comparing average wallclock times in parallel (2 nodes with 2 CPUs 
each) with average wallclock times in serial. 

ROUTINE 
NAME 

1/1 TIME 
(s) 

2/2 TIME 
(s) 

ACTUAL 
SPEED-UP 

RDAOIIII 955.8 277.5 3.4 

MT_DGEMM 567.9 294.7 1.9 
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